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Abstract. Modulational instability of travelling plane waves is often considered as the first step in the
formation of intrinsically localized modes (discrete breathers) in anharmonic lattices. Here, we consider an
alternative mechanism for breather formation, originating in oscillatory instabilities of spatially periodic
or quasiperiodic nonlinear standing waves (SWs). These SWs are constructed for Klein-Gordon or Discrete
Nonlinear Schrödinger lattices as exact time periodic and time reversible multibreather solutions from the
limit of uncoupled oscillators, and merge into harmonic SWs in the small-amplitude limit. Approaching
the linear limit, all SWs with nontrivial wave vectors (0 < Q < π) become unstable through oscillatory
instabilities, persisting for arbitrarily small amplitudes in infinite lattices. The dynamics resulting from
these instabilities is found to be qualitatively different for wave vectors smaller than or larger than π/2,
respectively. In one regime persisting breathers are found, while in the other regime the system thermalizes.

PACS. 63.20.Ry Anharmonic lattice modes – 45.05.+x General theory of classical mechanics of discrete
systems – 05.45.-a Nonlinear dynamics and nonlinear dynamical systems

We review some recent results concerning the role of a
certain class of exact solutions, Standing Waves (SWs)
in the dynamics of Hamiltonian anharmonic lattices. The
SWs are time-periodic non-propagating solutions, which
are periodic or quasiperiodic in space. We showed in [1]
that such solutions are unstable through oscillatory in-
stabilities under quite general conditions. Here, the main
ideas from [1] will be recalled, and further we will describe
the long-time dynamics resulting from the instabilities,
identifying their role in the processes of breather forma-
tion and thermalization. Further details appear in [2,3].

We will here mainly focus on the model described by
the discrete nonlinear Schrödinger (DNLS) equation:

iψ̇n = δψn − σ|ψn|2ψn + C(ψn+1 + ψn−1 − 2ψn). (1)

The DNLS equation describes generically the slow small-
amplitude dynamics of Klein-Gordon (KG) chains of
coupled anharmonic oscillators with weak intersite cou-
pling [4,5,2]. In this context, ψn is proportional to the
fundamental Fourier harmonic of the amplitude of the
oscillator at site n, δ represents the nonlinear frequency
shift, and σ = −1 (σ = +1) for soft (hard) anharmonicity.

a e-mail: mjn@ifm.liu.se

The DNLS equation also appears in many other contexts,
e.g. in models for nonlinear optical waveguide arrays [6].

In the KG model, SWs are time-periodic solutions
which can be chosen time reversible, reducing for small
amplitudes to the harmonic form ε cos(Qn + φ) cos(ωt)1.
Thus, all Fourier components are real and time indepen-
dent, so that the (generally complex) amplitude ψn rep-
resenting a SW in the DNLS approximation (1) also can
be chosen real and time independent. Consequently, the
SWs can be identified as bounded trajectories of the 2D
real symplectic cubic map (ψn−1, ψn) → (ψn, ψn+1) de-
fined by

ψn+1 = (2 − δ

C
)ψn +

σ

C
ψ3

n − ψn−1. (2)

We can choose σ = −1 and C > 0 without loss of general-
ity. Rescaling ψn → √

Cψn, it is clear that the qualitative
properties of the map only depend on the parameter δ

C .
An illustration of this map is given in Figure 1 (cf. [9]).

Among all trajectories we consider those which, when

1 By contrast, propagating waves in the KG model are con-
tinuations of harmonic plane-waves ε cos(Qn− ωt) [7,8].
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Fig. 1. The DNLS map (2) for σ = −1, δ = 0.5, C = 1.
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Fig. 2. Classification of SW map trajectories (σ = −1).

varying δ
C at fixed rotation number Q, are smoothly con-

tinued to the fixpoint (0,0) into a linear SW at δ =
4C sin2Q/2 ≡ δ0(Q). These are either periodic cycles
corresponding to SWs commensurate with the lattice, or
quasiperiodic trajectories yielding incommensurate SWs.
For any Q, SWs exist for all δ < δ0(Q) when σ = −1.
Moreover, the large-amplitude limit δ → −∞ is equiva-
lent to the uncoupled (anticontinuous [10]) limit C = 0
for fixed δ < 0.

The evolution of the trajectories corresponding to dif-
ferent types of SWs with fixed wave vector Q when vary-
ing δ

C is summarized in Figure 2. As for any rational
Q/2π there are always two distinct periodic cycles (hy-
perbolic resp. elliptic for δ close to δ0(Q)), there are two
distinct classes of commensurate SWs. For (typical) irra-
tional Q/2π, there is a unique KAM-torus for δ close to
δ0(Q) representing an incommensurate SW. At some crit-
ical value δc(Q) the elliptic cycle with rotation number Q
(Q/2π rational) becomes hyperbolic with reflection, while
the smooth, analytic KAM torus with irrational Q/2π
breaks up into a trajectory with a Cantor set structure
(‘Cantorus’) and another trajectory with the same Q con-
sisting of isolated, nonrecurrent points in the gaps of the
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Fig. 3. SW hull functions ψn = χS(Qn + φ) for Q/2π =
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Fig. 4. Circle map generation of the SW coding sequences.

cantorus (‘midgap trajectory’) [11]. This break-up consti-
tutes a Transition by Breaking of Analyticity (TBA) [11].
Defining the 2π-periodic hull (envelope) function χS(x)
for a SW as ψn = χS(Qn+ φ) (i.e. the shape of the wave
rescaled into one period 2π), the TBA at δc(Q) for this
hull function for an incommensurate SW is manifested as
shown in Figure 3.

When C = 0, a time-independent solution to equa-
tion (1) can only take three possible values: ψn = ±√−δ
or ψn = 0. This defines a coding sequence {σ̃n} as σ̃n = ±1
when ψn = ±√−δ and σ̃n = 0 when ψn = 0. Time-
periodic solutions defined via a coding sequence and con-
tinued from an anticontinuous limit are generally called
multibreathers [10]. Continuing the SW map trajectories
to δ

C → −∞, their coding sequences are found as gener-
ated by a circle map σ̃n = χ0(Qn+ φ) (cf. Fig. 4), with a
2π-periodic odd function χ0(x) defined for x ∈ [0, π] as

χ0(x) =

{
1 for (π −Q)/2 ≤ x ≤ (π +Q)/2,

0 elsewhere.
(3)

(The function χ0(x), rescaled with a factor
√−δ, is the

limit for C = 0 of the hull function χS(x) defined above.)
The two classes of SWs for each Q are distinguished by
the phase φ (corresponding to the initial point of the iter-
ation). For all φ �= φm ≡ ±(π−Q)/2−mQ (m integer) we
obtain the SWs classified as ‘(H)’ in Figure 2, while for
φ = φm we obtain SWs denoted as ‘(E)’. They differ by
the property that, as x = Qm+ φ is at a discontinuity of
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Fig. 5. Eigenvalues of (4) for H-SW with Q = 3π/4. (a) δ = −8.0; (b) δ = −7.5; (c) δ = −4.5; (d) δ = −0.5 (C = 1).

χ0(x) when φ = φm, E-SWs necessarily contain two con-
secutive codes +1 or −1, while H-SWs contain no such
consecutive codes. As a consequence, a result from [10]
yields that, generically for small coupling, H-SWs are dy-
namically linearly stable while E-SWs are unstable.

For general δ
C , the dynamical linear stability of SWs

in the DNLS model (1) can be obtained by substitut-
ing ψn → ψn + εn(t) into (1) and linearizing [12]. The
general solution to the linearized equations can be writ-
ten as a linear combination of solutions of the form
εn(t) = 1

2 (Un +Wn) eiωst + 1
2 (U∗

n −W ∗
n) e−iω∗

s t, with
eigenfrequencies ωs and eigenmodes {Un,Wn} determined
by the (non-Hermitian) eigenvalue problem

(2C − δ − ψ2
n)Wn − C(Wn+1 +Wn−1) = ωsUn

(2C − δ − 3ψ2
n)Un − C(Un+1 + Un−1) = ωsWn. (4)

The SW ψn is linearly stable if and only if all eigenvalues
ωs are real. Defining the Krein signature (see e.g. [10])
as K(ωs) = sign

∑
n Re [UnW

∗
n ], where {Un,Wn} is the

eigenvector with eigenvalue ωs > 0, instabilities may occur
if eigenvalues with opposite K collide when varying δ

C .
When C = 0 ( δ

C → −∞), equation (4) is easily solved.
Eigenvalues are ωs = 0, with eigenmodes {Un ≡ 0,Wn}
localized at sites where |σ̃n| = 1, and ωs = ±δ, with eigen-
modes {Un,Wn = ∓Un} at sites with σ̃n = 0. When
C > 0, these degenerate eigenvalues spread into bands.
For commensurate SWs the number of bands are finite,
while a Cantor-like spectrum appears for incommensurate
SWs. The instability of the E-SWs appears as eigenval-
ues move out on the imaginary axis, while for H-SWs the
bands spread initially only along the real axis showing
their linear stability for small C (Fig. 5a). Increasing δ

C
the bands broaden, and the main gap separating the bands
originating from ωs = 0 (with K = −1) with those from
ωs = ±δ (with K = +1) shrinks to zero. Then, eigenval-
ues collide and move out in the complex plane, generating
oscillatory instabilities for the SW (Fig. 5b). For some Q,
stability is temporarily regained for intervals of δ

C where
no bands overlap (Fig. 5c). However, more instabilities
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Fig. 6. Slightly perturbed H-SW with Q = 12π/55 < π/2,
δ = 0.06, C = 1 (rational approximant to analytic SW).

associated with band overlap appear as δ
C is further in-

creased (Fig. 5d), and close to the linear limit all SWs
with 0 < Q < π are linearly unstable for infinite systems.

In [1,2] the generic instability of SWs close to the linear
limit was shown by perturbation theory; here we will recall
an intuitive argument for the commensurate case. At the
linear limit (δ = δ0(Q), ψ2

n = 0), equation (4) has two sets
of plane wave solutions Un = ±Wn = eiqn yielding the
eigenvalue spectrum ωs = ±2C(cosQ− cos q) with Krein
signatures K(ωs) = sign(cosQ− cos q). Thus, eigenvalues
with opposite K overlap in an interval around ωs = 0.
Going away from the linear limit, each band splits into a
finite number of bands with nonzero width. Consequently,
bands with opposite K still overlap, and resonant coupling
causes oscillatory instabilities as soon as ψ2

n �= 0.
We now discuss the dynamics resulting from the os-

cillatory SW instabilities, which, generally, exhibits three
main regimes (see Figs. 6–7). The initial oscillatory dy-
namics with exponentially increasing amplitude is well de-
scribed by the most unstable eigenvector of equation (4),
and typically yields modulations along the chain. When
the oscillation amplitudes exceed some threshold the lin-
earized description is no longer valid, and we observe an in-
termediate regime characterized by inhomogeneous trans-
lational motion, where the wave remains locally coherent
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Fig. 7. (a) Slightly perturbed nonanalytic H-SW with Q =
68π/89 > π/2, δ = 2.3, C = 1; (b) dynamics of ‘discommensu-
rations’, defined as sites in (a) with |ψn| < 0.6.

but with its different parts moving with respect to each
other. Gradually, the wave loses coherence and a final
space-time chaotic regime appears, the statistical prop-
erties of which depend on Q as discussed below.

The qualitatively different dynamics for small and
large Q can be understood from the properties of the an-
ticontinuous coding sequence (cf. Fig. 4). For small Q, the
windows giving codes σ̃n = ±1 are narrow, and thus the
SW can be regarded as an array of interacting breathers
with opposite phases, where each breather corresponds
to a site with code ±1, and the distance between the
breathers increases as Q decreases. Thus, the intermediate
regime can be interpreted as moving breathers colliding
inelastically with each other (Fig. 6). On the other hand,
for Q close to π the windows of codes σ̃n = ±1 are wide,
and we can regard each site with code 0 as a discommen-
suration (cf. e.g. [13]) in the stable wave with Q = π.
As shown in [14], a single discommensuration (‘discrete
dark soliton’) is oscillatorily unstable resulting in discom-
mensuration motion. The intermediate regime can then be
regarded as moving discommensurations colliding inelas-
tically (Fig. 7).

Concerning the asymptotic dynamics, it was
shown [15] for typical initial conditions to depend critically
on the values of the two conserved quantities: Hamiltonian
H=

∑N
n=1

(−δ|ψn|2 + σ
2 |ψn|4 + C|ψn+1−ψn|2

)
and norm

N =
∑N

n=1 |ψn|2. Redefining H into H′ = H+(δ−2C)N ,
a phase transition was found at the curve

H′

N
= σ

(N
N

)2

(5)

Fig. 8. H′/N vs. N/N for H-SWs with different Q increasing
from left to right (σ = −1, C = 1).
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Fig. 9. Unstable H-SW in a chain of N = 189 sites with
Q = 2π/7 < π/2 and δ = −0.2 (C = 1).

in the thermodynamic limit when the number of sites
N → ∞. On one side of this line (below for σ > 0
and above for σ < 0), the system thermalizes in a
Gibbsian sense with well-defined temperature and chem-
ical potential. On the other side, the system shows a
negative-temperature type behaviour, and persistent local-
ized high-amplitude standing breathers are created. Equa-
tion (5) corresponds to the limit of infinite temperature in
the Gibbsian regime, where each site is assumed to ther-
malize independently, i.e. the coupling term in H′ is ne-
glected. Noting that a H-SW with Q = π/2 has the form

ψ2m+1 = (−1)m
√

δ
σ , ψ2m = 0, the coupling term in H′ is

exactly zero, and thus this SW lies exactly on the phase
transition line. Consequently, H-SWs with a given Q al-
ways belong to the same phase regardless on the value of
δ/C, and SWs with Q < π/2 and those with Q > π/2
always belong to different phases (Fig. 8).

For σ = −1 we confirmed that unstable H-SWs in
large DNLS systems approach thermalized states when
Q > π/2 (e.g. the long-time limit of the simulation in
Fig. 7), while persistent breathers appear when Q < π/2
(Fig. 9) (although for Q close to π/2 the system size
required for breather formation is large). A similar be-
haviour was also observed for KG lattices with small cou-
pling [2], but it is questionable whether a true transition
exists also in the absence of a second conserved quantity.
Likely, the ‘breather phase’ in KG lattices only describes
the dynamics over long but finite times, with asymptotic
equipartition similarly as for FPU systems [16].
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We conclude by comparing some properties of non-
linear SWs with those of nonlinear propagating waves
(PWs): (i) SWs are time-reversible continuations of
harmonic solutions cos(Qn)e−iωt (in the DNLS model
time-independent in a rotating-wave frame), while PWs
are continuations of harmonic plane-waves ei(Qn−ωt) [7];
(ii) SWs are multibreathers with (quasi-)periodically re-
peated codes 1,0,-1, while PWs are continuations of an-
ticontinuous solutions {σ̃n} ≡ 1 with phase torsion [8];
(iii) small-amplitude SWs have oscillatory instabilities for
all 0 < Q < π, while PWs have non-oscillatory modula-
tional instabilities only for 0 ≤ Q < π/2 (σ = −1 ) or
π/2 < Q ≤ π (σ = +1 ); (iv) unstable SWs with Q < π/2
and Q > π/2 belong to different phases yielding qualita-
tively different asymptotic dynamics (breather formation
or equipartition), while PWs with given Q may cross the
phase transition line as the amplitude is varied [15].

M.J. is supported by the Swedish Research Council and G.K.
by the Greek G.S.R.T. .
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7. G. Iooss, K. Kirchgässner, Commun. Math. Phys. 211, 439
(2000)

8. T. Cretegny, S. Aubry, Phys. Rev. B 55, R11929 (1997)
9. P. Bak, V.L. Pokrovsky, Phys. Rev. Lett. 47, 958 (1981);

J. Coste, J. Peyraud, Phys. Rev. B 39, 13086 (1989); Yi
Wan, C.M. Soukoulis, Phys. Rev. A 41, 800 (1990); D.
Hennig, G.P. Tsironis, Phys. Rep. 307, 333 (1999)

10. S. Aubry, Physica D 103, 201 (1997)
11. S. Aubry, in Solitons and Condensed Matter Physics,

edited by A.R. Bishop, T. Schneider (Springer, Berlin,
1978), p. 264; J. Mather, Publ. Math. IHES 63, 153 (1986);
A. Katok, B. Hasselblatt, Introduction to the Modern The-
ory of Dynamical Systems (Cambridge University Press,
Cambridge, 1995), p. 441

12. J. Carr, J.C. Eilbeck, Phys. Lett. A 109, 201 (1985)
13. S. Aubry et al., Physica D 47, 461 (1991)
14. M. Johansson, Yu.S. Kivshar, Phys. Rev. Lett. 82, 85

(1999)
15. K.Ø. Rasmussen et al., Phys. Rev. Lett. 84, 3740 (2000)
16. T. Cretegny et al., Physica D 121, 109 (1998)


